一、基本信息
赖安迪,男,1995年3月生,工学博士,讲师,硕士生导师。2022年6月至今,在(中国)股份有限公司官网任教。主要从事奇弹性理论、金属3D打印、超材料等方面的研究。团队科研条件完备,欢迎具有专业兴趣和志向的学生报考。
联系方式:andi@csust.edu.cn
二、教育背景
2017/09-2022/06,大连理工大学,工程力学专业,博士(直博)
2013/09-2017/06,(中国)股份有限公司官网,工程力学专业,本科
三、研究领域
● 结构的奇弹性稳定性与动力学
● 金属3D打印
● 超材料-混凝土组合结构
四、项目情况
[1] 湖南省教育厅,青年项目,超材料-薄壁结构耦合吸能装置的设计和优化,2023/01至今,在研,主持;
[2] (中国)股份有限公司官网土木工程重点学科创新性项目,自驱动活性板壳结构的奇弹性稳定性研究,2024/01至今,在研,主持;
[3] 大连市科技局,重点学科重大课题,基于表面纳米化技术的城市轨道交通吸能装置设计和优化,2018/01-2021/10,已结题,参与。
五、主讲课程
《数学物理方法》《材料力学》《结构力学》
六、学术论文
[1] Lai A D, Zhou J W, Lim C W. Chiral standing spin waves and unidirectional waves of odd elastic cylindrical shells[J]. Journal of Applied Mechanics, 2024, 91(5): 1-27.
[2] Lai A D, Zhou J W, Fu G. Odd elastic stability of cylindrical shells [J]. European Journal of Mechanics - A/Solids, 2024, 104: 105220.
[3] Fu G, Zhou J W, Dai T, Lai A D (通讯作者). Electroelastic effects on local-global buckling of piezoelectric cylindrical shells with stepped thickness[J]. Journal of Mechanics of Materials and Structures, 2024, 19(1): 141-156.
[4] Lai A D, Fu G, Liu P Q. A symplectic analytical approach for torsional buckling of cylindrical shells with asymmetric local defects[J]. International Journal of Structural Stability and Dynamics, 2022: 2350093.
[5] Lai A D, Zhao B, Peng X L, et al. Effects of local thickness defects on the buckling of micro-beam[J]. Applied Mathematics and Mechanics, 2022, 43(5): 729-742.
[6] Lai A D, Jia J F, Zhou Z H, et al. Homotopic analysis for post-buckling of cylindrical shells with local thickness defects[J]. Acta Astronautica, 2022, 193: 44-55.
[7] Lai A D, Jia J F, Qu J L, et al. Local–global buckling of cylindrical shells with wall thinning defects[J]. Mechanics Based Design of Structures and Machines, 2021: 1-20.
[8] Jia J F, Lai A D, Qu J L, et al. Effects of local thinning defects and stepped thickness for free vibration of cylindrical shells using a symplectic exact solution approach[J]. Acta Astronautica, 2021, 178: 658-671.
[9] Jia J F, Lai A D, Li T, et al. A symplectic analytical approach for free vibration of orthotropic cylindrical shells with stepped thickness under arbitrary boundary conditions[J]. Thin-Walled Structures, 2022, 171: 108696.
[10] Jia J F, Xu X S, Li Y Q, Zhu S B, Ni Y W, Lai A D, Tong Z Z, Zhou Z H. Free vibration characteristics of piezoelectric cylindrical shells with stepped thickness using an analytical symplectic approach[J]. Applied Mathematical Modelling, 2023.
[11] Zhao B, Long C Y, Peng X L, Chen J, Liu T, Zhang Z H, Lai A D. Size effect and geometrically nonlinear effect on thermal post-buckling of micro-beams: a new theoretical analysis[J]. Continuum Mechanics and Thermodynamics, 2022, 34(2): 519-532.
[12] Jia J F, Lai A D, Rong D L, et al. Dynamic behaviors of cylindrical shells with geometric imperfection[C]//MATEC Web of Conferences. EDP Sciences, 2019, 293: 01003.
[13] 赖安迪, 赵建宇, 周震寰, 徐新生. 阶梯圆柱壳屈曲问题的哈密顿方法[J]. 辽宁工程技术大学学报, 2022, 41(03): 265-269.
[14] 吴仕荣, 赖安迪, 周凯, 周震寰, 徐新生. 弹性板中柱面Lamb波问题的哈密顿体系方法[J]. 辽宁工程技术大学学报, 2022,41(06): 533-538.
[15] 范俊海, 贾菊芳, 赖安迪, 周震寰, 徐新生. 双层石墨烯系统稳态受迫振动问题中的辛方法[J]. 计算力学学报, 2020, 37(02):193-198.
[16] 贾菊芳, 赖安迪, 屈建龙等. 弹性阶梯圆柱壳自由振动问题的辛分析方法[C]//中国力学学会. 中国力学大会-2021+1论文集(第一册), 2022:795. DOI:10.26914/c.cnkihy. 2022.065462.